
Package: GoodFitSBM (via r-universe)
August 22, 2024

Title Monte Carlo goodness-of-fit tests for Stochastic Blockmodels

Version 0.0.1

Description Performing goodness-of-fit tests for stochastic
blockmodels used to fit network data. Among the three variants
of SBMs discussed in <https://doi.org/10.1093/jrsssb/qkad084>,
goodness-of-fit test has been performed for the Erdős-Rényi
(ER) and Beta versions of SBMs.

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.2.3

URL https://github.com/Roy-SR-007/GoodFitSBM

BugReports https://github.com/Roy-SR-007/GoodFitSBM/issues

Imports stats, igraph, utils, irlba

Depends R (>= 2.10)

LazyData true

Collate 'Bipartite_Walk.R' 'Estimation_BetaSBM.R' 'Estimation_Block.R'
'Estimation_ERSBM.R' 'Get_Directed_Piece.R'
'Get_Directed_Move_p1_ed.R'
'Get_Between_Blocks_Move_beta_SBM.R' 'as_arbitrary_directed.R'
'Get_Bidirected_Piece.R' 'Get_Bidirected_Move.R'
'Get_Induced_Subgraph.R' 'Get_Within_Blocks_beta_SBM.R'
'Get_Move_Beta_SBM.R' 'Get_Next_Network.R'
'Sampling_Graph_BetaSBM.R' 'TestStatistic_BetaSBM.R'
'GoFTest_BetaSBM.R' 'Sampling_Graph_ERSBM.R'
'TestStatistic_ERSBM.R' 'GoFTest_ERSBM.R' 'zachary.R'

Acknowledgement We would like to thank all the authors of
<https://doi.org/10.1093/jrsssb/qkad084>.

Repository https://roy-sr-007.r-universe.dev

RemoteUrl https://github.com/roy-sr-007/goodfitsbm

RemoteRef HEAD

RemoteSha f5d20fae9d9a836c62e125c6fa65bd96230fc174

1

https://doi.org/10.1093/jrsssb/qkad084
https://github.com/Roy-SR-007/GoodFitSBM
https://github.com/Roy-SR-007/GoodFitSBM/issues

2 get_mle_BetaSBM

Contents
get_mle_BetaSBM . 2
get_mle_ERSBM . 3
goftest_BetaSBM . 5
goftest_ERSBM . 8
graphchi_BetaSBM . 12
graphchi_ERSBM . 14
sample_a_move_BetaSBM . 15
sample_a_move_ERSBM . 17
zachary . 18

Index 20

get_mle_BetaSBM Maximum Likelihood Estimation of edge probabilities between blocks
of a graph, under beta-SBM

Description

get_mle_BetaSBM obtains MLE for the probability of edges between blocks in a graph, used in
calculating the goodness-of-fit test statistic for the beta-SBM (Karwa et al. (2023))

Usage

get_mle_BetaSBM(G, C)

Arguments

G an igraph object which is an undirected graph with no self loop

C a positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

Value

A matrix of maximum likelihood estimates

mleMatr a matrix containing the estimated edge probabilities between blocks in a graph

References

Karwa et al. (2023). "Monte Carlo goodness-of-fit tests for degree corrected and related stochastic
blockmodels", Journal of the Royal Statistical Society Series B: Statistical Methodology, https:
//doi.org/10.1093/jrsssb/qkad084

See Also

goftest_BetaSBM() performs the goodness-of-fit test for the beta-SBM, where the MLE of the
edge probabilities are required

https://doi.org/10.1093/jrsssb/qkad084
https://doi.org/10.1093/jrsssb/qkad084

get_mle_ERSBM 3

Examples

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

graph from the adjacency matrix
G = igraph::graph_from_adjacency_matrix(adjsymm, mode = "undirected", weighted = NULL)

mle of the edge probabilities
get_mle_BetaSBM(G, class)

get_mle_ERSBM Maximum Likelihood Estimation of edge probabilities between blocks
of a graph, under ERSBM

4 get_mle_ERSBM

Description

get_mle_ERSBM obtains MLE for the probability of edges between blocks in a graph, used in cal-
culating the goodness-of-fit test statistic for the ERSBM (Karwa et al. (2023))

Usage

get_mle_ERSBM(G, C)

Arguments

G an igraph object which is an undirected graph with no self loop

C a positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

Value

A matrix of maximum likelihood estimates

mleMatr a matrix containing the estimated edge probabilities between blocks in a graph

References

Karwa et al. (2023). "Monte Carlo goodness-of-fit tests for degree corrected and related stochastic
blockmodels", Journal of the Royal Statistical Society Series B: Statistical Methodology, https:
//doi.org/10.1093/jrsssb/qkad084

See Also

goftest_ERSBM() performs the goodness-of-fit test for the ERSBM, where the MLE of the edge
probabilities are required

Examples

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,

https://doi.org/10.1093/jrsssb/qkad084
https://doi.org/10.1093/jrsssb/qkad084

goftest_BetaSBM 5

0.05, 0.05, 30
),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

graph from the adjacency matrix
G = igraph::graph_from_adjacency_matrix(adjsymm, mode = "undirected", weighted = NULL)

mle of the edge probabilities
get_mle_ERSBM(G, class)

goftest_BetaSBM Monte Carlo goodness-of-fit test for a beta stochastic blockmodel
(beta-SBM)

Description

goftest_BetaSBM performs chi square goodness-of-fit test for network data considering the model
as beta-SBM (Karwa et al. (2023))

Usage

goftest_BetaSBM(A, K = NULL, C = NULL, numGraphs = 100)

Arguments

A n by n binary symmetric adjacency matrix representing an undirected graph
where n is the number of nodes in the graph

K positive integer scalar representing the number of blocks; K>1

C positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

numGraphs number of graphs to be sampled; default value is 100

6 goftest_BetaSBM

Value

A list with the elements

statistic the values of the chi-square test statistics on each sampled graph

p.value the p-value for the test

References

Karwa et al. (2023). "Monte Carlo goodness-of-fit tests for degree corrected and related stochastic
blockmodels", Journal of the Royal Statistical Society Series B: Statistical Methodology, https:
//doi.org/10.1093/jrsssb/qkad084

Examples

Example 1

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

https://doi.org/10.1093/jrsssb/qkad084
https://doi.org/10.1093/jrsssb/qkad084

goftest_BetaSBM 7

When class assignment is known
out = goftest_BetaSBM(adjsymm, C = class, numGraphs = 100)

chi_sq_seq = out$statistic
pvalue = out$p.value
print(pvalue)

Plotting histogram of the sequence of the test statistics
hist(chi_sq_seq, 20, xlab = "chi-square test statistics", main = NULL)
abline(v = chi_sq_seq[1], col = "red", lwd = 5) # adding test statistic on the observed network
legend("topleft", legend = paste("observed GoF = ", chi_sq_seq[1]))

Example 2

#' RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 30
n2 = 20
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

When class assignment is known
out = goftest_BetaSBM(adjsymm, C = class, numGraphs = 100)

8 goftest_ERSBM

chi_sq_seq = out$statistic
pvalue = out$p.value
print(pvalue)

Plotting histogram of the sequence of the test statistics
hist(chi_sq_seq, 20, xlab = "chi-square test statistics", main = NULL)
abline(v = chi_sq_seq[1], col = "red", lwd = 5) # adding test statistic on the observed network
legend("topleft", legend = paste("observed GoF = ", chi_sq_seq[1]))

Application on real dataset: Testing on the Zachary's Karate Club Data

set.seed(100000)

data("zachary")

d = zachary # the Zachary's Karate Club data set

the adjacency matrix
A_zachary = as.matrix(d[1:34,])
colnames(A_zachary) = 1:34

obtaining the graph from the adjacency matrix above
g_zachary = igraph::graph_from_adjacency_matrix(A_zachary, mode = "undirected", weighted = NULL)

plotting the graph (network) obtained
plot(g_zachary,
main = "Network (Graph) for the Zachary's Karate Club data set; reference clustering")

block assignments
K = 2 # no. of blocks

n1 = 10
n2 = 24
n = n1 + n2

known class assignments
class = rep(c(1, 2), c(n1, n2))
goodness-of-fit tests for the Zachary's Karate Club data set
out_zachary = goftest_BetaSBM(A_zachary, C = class, numGraphs = 100)

chi_sq_seq = out_zachary$statistic
pvalue = out_zachary$p.value
print(pvalue)

Plotting histogram of the sequence of the test statistics
hist(chi_sq_seq, 20, xlab = "chi-square test statistics", main = NULL)
abline(v = chi_sq_seq[1], col = "red", lwd = 5) # adding test statistic on the observed network
legend("topleft", legend = paste("observed GoF = ", chi_sq_seq[1]))

goftest_ERSBM 9

goftest_ERSBM Monte Carlo goodness-of-fit test for an Erdős-Rényi stochastic block-
model (ERSBM)

Description

goftest_ERSBM performs chi square goodness-of-fit test for network data considering the model as
ERSBM (Karwa et al. (2023))

Usage

goftest_ERSBM(A, K = NULL, C = NULL, numGraphs = 100)

Arguments

A n by n binary symmetric adjacency matrix representing an undirected graph
where n is the number of nodes in the graph

K positive integer scalar representing the number of blocks; K>1

C positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

numGraphs number of graphs to be sampled; default value is 100

Value

A list with the elements

statistic the values of the chi-square test statistics on each sampled graph

p.value the p-value for the test

References

Karwa et al. (2023). "Monte Carlo goodness-of-fit tests for degree corrected and related stochastic
blockmodels", Journal of the Royal Statistical Society Series B: Statistical Methodology, https:
//doi.org/10.1093/jrsssb/qkad084

Examples

Example 1

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3

https://doi.org/10.1093/jrsssb/qkad084
https://doi.org/10.1093/jrsssb/qkad084

10 goftest_ERSBM

class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

When class assignment is known
out = goftest_ERSBM(adjsymm, C = class, numGraphs = 100)

chi_sq_seq = out$statistic
pvalue = out$p.value
print(pvalue)

Plotting histogram of the sequence of the test statistics
hist(chi_sq_seq, 20, xlab = "chi-square test statistics", main = NULL)
abline(v = chi_sq_seq[1], col = "red", lwd = 5) # adding test statistic on the observed network
legend("topleft", legend = paste("observed GoF = ", chi_sq_seq[1]))

Example 2

#' RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 30
n2 = 20
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network

goftest_ERSBM 11

Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

When class assignment is known
out = goftest_ERSBM(adjsymm, C = class, numGraphs = 100)

chi_sq_seq = out$statistic
pvalue = out$p.value
print(pvalue)

Plotting histogram of the sequence of the test statistics
hist(chi_sq_seq, 20, xlab = "chi-square test statistics", main = NULL)
abline(v = chi_sq_seq[1], col = "red", lwd = 5) # adding test statistic on the observed network
legend("topleft", legend = paste("observed GoF = ", chi_sq_seq[1]))

Application on real dataset: Testing on the Zachary's Karate Club Data

set.seed(100000)

data("zachary")

d = zachary # the Zachary's Karate Club data set

the adjacency matrix
A_zachary = as.matrix(d[1:34,])
colnames(A_zachary) = 1:34

obtaining the graph from the adjacency matrix above
g_zachary = igraph::graph_from_adjacency_matrix(A_zachary, mode = "undirected", weighted = NULL)

plotting the graph (network) obtained
plot(g_zachary,
main = "Network (Graph) for the Zachary's Karate Club data set; reference clustering")

12 graphchi_BetaSBM

block assignments
K = 2 # no. of blocks

n1 = 10
n2 = 24
n = n1 + n2

known class assignments
class = rep(c(1, 2), c(n1, n2))
goodness-of-fit tests for the Zachary's Karate Club data set
out_zachary = goftest_ERSBM(A_zachary, C = class, numGraphs = 100)

chi_sq_seq = out_zachary$statistic
pvalue = out_zachary$p.value
print(pvalue)

Plotting histogram of the sequence of the test statistics
hist(chi_sq_seq, 20, xlab = "chi-square test statistics", main = NULL)
abline(v = chi_sq_seq[1], col = "red", lwd = 5) # adding test statistic on the observed network
legend("topleft", legend = paste("observed GoF = ", chi_sq_seq[1]))

graphchi_BetaSBM Computation of the chi-square test statistic for goodness-of-fit, under
beta-SBM

Description

graphchi_BetaSBM obtains the value of the chi-square test statistic required for the goodness-of-fit
of a beta-SBM (Karwa et al. (2023))

Usage

graphchi_BetaSBM(G, C, p_mle)

Arguments

G an igraph object which is an undirected graph with no self loop

C a positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

p_mle a matrix with the MLE estimates of the edge probabilities

Value

A numeric value

teststat_val The value of the chi-square test statistic

graphchi_BetaSBM 13

See Also

goftest_BetaSBM() performs the goodness-of-fit test for the beta-SBM, where the values of the
chi-square test statistics are required

Examples

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

graph from the adjacency matrix
G = igraph::graph_from_adjacency_matrix(adjsymm, mode = "undirected", weighted = NULL)

mle of the edge probabilities
p.hat = get_mle_BetaSBM (G, class)

chi-square test statistic values
graphchi_BetaSBM(G, class, p.hat)

14 graphchi_ERSBM

graphchi_ERSBM Computation of the chi-square test statistic for goodness-of-fit, under
ERSBM

Description

graphchi_ERSBM obtains the value of the chi-square test statistic required for the goodness-of-fit of
a ERSBM (Karwa et al. (2023))

Usage

graphchi_ERSBM(G, C, p_mle)

Arguments

G an igraph object which is an undirected graph with no self loop

C a positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

p_mle a matrix with the MLE estimates of the edge probabilities

Value

A numeric value

teststat_val The value of the chi-square test statistic

See Also

goftest_ERSBM() performs the goodness-of-fit test for the ERSBM, where the values of the chi-
square test statistics are required

Examples

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(

sample_a_move_BetaSBM 15

30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

graph from the adjacency matrix
G = igraph::graph_from_adjacency_matrix(adjsymm, mode = "undirected", weighted = NULL)

mle of the edge probabilities
p.hat = get_mle_ERSBM(G, class)

chi-square test statistic values
graphchi_ERSBM(G, class, p.hat)

sample_a_move_BetaSBM Sampling a graph through a Markov move (basis) for beta-SBM

Description

sample_a_move_BetaSBM to sample a graph in the same fiber; sampling according to the beta-SBM
(Karwa et al. (2023))

Usage

sample_a_move_BetaSBM(C, G_current)

Arguments

C a positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

G_current an igraph object which is an undirected graph with no self loop

16 sample_a_move_BetaSBM

Value

A graph

sampled graph the sampled graph after one move as per the beta-SBM

References

Karwa et al. (2023). "Monte Carlo goodness-of-fit tests for degree corrected and related stochastic
blockmodels", Journal of the Royal Statistical Society Series B: Statistical Methodology, https:
//doi.org/10.1093/jrsssb/qkad084

See Also

goftest_BetaSBM() performs the goodness-of-fit test for the beta-SBM, where graphs are being
sampled

Examples

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

https://doi.org/10.1093/jrsssb/qkad084
https://doi.org/10.1093/jrsssb/qkad084

sample_a_move_ERSBM 17

adjsymm = adj + t(adj)

graph from the adjacency matrix
G = igraph::graph_from_adjacency_matrix(adjsymm, mode = "undirected", weighted = NULL)

sampling a Markov move for the beta-SBM
G_sample = sample_a_move_BetaSBM(class, G)

plotting the sampled graph
plot(G_sample, main = "The sampled graph after one Markov move for beta-SBM")

sample_a_move_ERSBM Sampling a graph through a Markov move (basis) for ERSBM

Description

sample_a_move_ERSBM to sample a graph in the same fiber; sampling according to the ERSBM
(Karwa et al. (2023))

Usage

sample_a_move_ERSBM(C, G_current)

Arguments

C a positive integer vector of size n for block assignments of each node; from 1 to
K (no of blocks)

G_current an igraph object which is an undirected graph with no self loop

Value

A graph

sampled graph the sampled graph after one move as per the ERSBM

References

Karwa et al. (2023). "Monte Carlo goodness-of-fit tests for degree corrected and related stochastic
blockmodels", Journal of the Royal Statistical Society Series B: Statistical Methodology, https:
//doi.org/10.1093/jrsssb/qkad084

See Also

goftest_ERSBM() performs the goodness-of-fit test for the ERSBM, where graphs are being sam-
pled

https://doi.org/10.1093/jrsssb/qkad084
https://doi.org/10.1093/jrsssb/qkad084

18 zachary

Examples

RNGkind(sample.kind = "Rounding")
set.seed(1729)

We model a network with 3 even classes
n1 = 50
n2 = 50
n3 = 50

Generating block assignments for each of the nodes
n = n1 + n2 + n3
class = rep(c(1, 2, 3), c(n1, n2, n3))

Generating the adjacency matrix of the network
Generate the matrix of connection probabilities
cmat = matrix(

c(
30, 0.05, 0.05,
0.05, 30, 0.05,
0.05, 0.05, 30

),
ncol = 3,
byrow = TRUE

)
pmat = cmat / n

Creating the n x n adjacency matrix
adj <- matrix(0, n, n)
for (i in 2:n) {

for (j in 1:(i - 1)) {
p = pmat[class[i], class[j]] # We find the probability of connection with the weights
adj[i, j] = rbinom(1, 1, p) # We include the edge with probability p

}
}

adjsymm = adj + t(adj)

graph from the adjacency matrix
G = igraph::graph_from_adjacency_matrix(adjsymm, mode = "undirected", weighted = NULL)

sampling a Markov move for the ERSBM
G_sample = sample_a_move_ERSBM(class, G)

plotting the sampled graph
plot(G_sample, main = "The sampled graph after one Markov move for ERSBM")

zachary Zachary Karate Club Data

zachary 19

Description

Zachary’s Karate club data is a classic, well-studied social network of friendships between 34 mem-
bers of a Karate club at a US university, collected by Wayne Zachary in 1977. Each node represents
a member of the club, and each edge represents a tie between two members of the club. The network
is undirected. An often discussed problem using this dataset is to find the two groups of people into
which the karate club split after an argument between two teachers.

Usage

zachary

Format

Two 34 by 34 matrices:

ZACHE symmetric, binary 34 by 34 adjacency matrix.

ZACHC symmetric, valued 34 by 34 matrix, indicating the relative strength of the associations

Source

(Zachary, 1977), http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm#zachary.

http://vlado.fmf.uni-lj.si/pub/networks/data/Ucinet/UciData.htm#zachary

Index

∗ datasets
zachary, 18

get_mle_BetaSBM, 2
get_mle_ERSBM, 3
goftest_BetaSBM, 5
goftest_BetaSBM(), 2, 13, 16
goftest_ERSBM, 8
goftest_ERSBM(), 4, 14, 17
graphchi_BetaSBM, 12
graphchi_ERSBM, 14

sample_a_move_BetaSBM, 15
sample_a_move_ERSBM, 17

zachary, 18

20

	get_mle_BetaSBM
	get_mle_ERSBM
	goftest_BetaSBM
	goftest_ERSBM
	graphchi_BetaSBM
	graphchi_ERSBM
	sample_a_move_BetaSBM
	sample_a_move_ERSBM
	zachary
	Index

