Package: bayesestdft 1.0.0

bayesestdft: Estimating the Degrees of Freedom of the Student's t-Distribution under a Bayesian Framework

A Bayesian framework to estimate the Student's t-distribution's degrees of freedom is developed. Markov Chain Monte Carlo sampling routines are developed as in <doi:10.3390/axioms11090462> to sample from the posterior distribution of the degrees of freedom. A random walk Metropolis algorithm is used for sampling when Jeffrey's and Gamma priors are endowed upon the degrees of freedom. In addition, the Metropolis-adjusted Langevin algorithm for sampling is used under the Jeffrey's prior specification. The Log-normal prior over the degrees of freedom is posed as a viable choice with comparable performance in simulations and real-data application, against other prior choices, where an Elliptical Slice Sampler is used to sample from the concerned posterior.

Authors:Somjit Roy [aut, cre], Se Yoon Lee [aut, ctb]

bayesestdft_1.0.0.tar.gz
bayesestdft_1.0.0.zip(r-4.5)bayesestdft_1.0.0.zip(r-4.4)bayesestdft_1.0.0.zip(r-4.3)
bayesestdft_1.0.0.tgz(r-4.4-any)bayesestdft_1.0.0.tgz(r-4.3-any)
bayesestdft_1.0.0.tar.gz(r-4.5-noble)bayesestdft_1.0.0.tar.gz(r-4.4-noble)
bayesestdft_1.0.0.tgz(r-4.4-emscripten)bayesestdft_1.0.0.tgz(r-4.3-emscripten)
bayesestdft.pdf |bayesestdft.html
bayesestdft/json (API)

# Install 'bayesestdft' in R:
install.packages('bayesestdft', repos = c('https://roy-sr-007.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/roy-sr-007/bayesestdft/issues

Datasets:

On CRAN:

2.70 score 1 stars 1 scripts 3 exports 17 dependencies

Last updated 6 days agofrom:e72ac816f1. Checks:7 OK. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 10 2025
R-4.5-winOKJan 10 2025
R-4.5-linuxOKJan 10 2025
R-4.4-winOKJan 10 2025
R-4.4-macOKJan 10 2025
R-4.3-winOKJan 10 2025
R-4.3-macOKJan 10 2025

Exports:BayesGABayesJeffreysBayesLNP

Dependencies:clidplyrfansigenericsgluelifecyclemagrittrnumDerivpillarpkgconfigR6rlangtibbletidyselectutf8vctrswithr