Package: bayesestdft 1.0.0
bayesestdft: Estimating the Degrees of Freedom of the Student's t-Distribution under a Bayesian Framework
A Bayesian framework to estimate the Student's t-distribution's degrees of freedom is developed. Markov Chain Monte Carlo sampling routines are developed as in <doi:10.3390/axioms11090462> to sample from the posterior distribution of the degrees of freedom. A random walk Metropolis algorithm is used for sampling when Jeffrey's and Gamma priors are endowed upon the degrees of freedom. In addition, the Metropolis-adjusted Langevin algorithm for sampling is used under the Jeffrey's prior specification. The Log-normal prior over the degrees of freedom is posed as a viable choice with comparable performance in simulations and real-data application, against other prior choices, where an Elliptical Slice Sampler is used to sample from the concerned posterior.
Authors:
bayesestdft_1.0.0.tar.gz
bayesestdft_1.0.0.zip(r-4.5)bayesestdft_1.0.0.zip(r-4.4)bayesestdft_1.0.0.zip(r-4.3)
bayesestdft_1.0.0.tgz(r-4.4-any)bayesestdft_1.0.0.tgz(r-4.3-any)
bayesestdft_1.0.0.tar.gz(r-4.5-noble)bayesestdft_1.0.0.tar.gz(r-4.4-noble)
bayesestdft_1.0.0.tgz(r-4.4-emscripten)bayesestdft_1.0.0.tgz(r-4.3-emscripten)
bayesestdft.pdf |bayesestdft.html✨
bayesestdft/json (API)
# Install 'bayesestdft' in R: |
install.packages('bayesestdft', repos = c('https://roy-sr-007.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/roy-sr-007/bayesestdft/issues
- index_return - Stock Market Index Return Data
Last updated 6 days agofrom:e72ac816f1. Checks:7 OK. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 10 2025 |
R-4.5-win | OK | Jan 10 2025 |
R-4.5-linux | OK | Jan 10 2025 |
R-4.4-win | OK | Jan 10 2025 |
R-4.4-mac | OK | Jan 10 2025 |
R-4.3-win | OK | Jan 10 2025 |
R-4.3-mac | OK | Jan 10 2025 |
Exports:BayesGABayesJeffreysBayesLNP
Dependencies:clidplyrfansigenericsgluelifecyclemagrittrnumDerivpillarpkgconfigR6rlangtibbletidyselectutf8vctrswithr